
	

A Production System for 
Information Extraction� 
Based on Complete 
Syntactic‑Semantic Analysis

Starostin A. S. (astarostin@abbyy.com), 
Smurov I. M. (ismurov@abbyy.com), 
Stepanova M. E. (mstepanova@abbyy.com)

ABBYY, Moscow, Russia

The article presents a mechanism for information extraction from unstruc-
tured natural language data. The key feature of this mechanism is that it re-
lies on deep syntactic and semantic analysis of the text. The system takes 
a collection of syntactic-semantic dependency trees as input and, after 
processing them, outputs an RDF graph consistent with certain domain 
ontology.

The mechanism was implemented within a deployable information extrac-
tion system, which is a part of ABBY Y Compreno technology—a powerful 
tool for a broad range of NLP-tasks that include machine translation, se-
mantic search and text categorization. The description of the extraction 
algorithm and the results of the system performance evaluation are given.

Evaluation tests were conducted on the MUC-6 corpus. The overall F‑measure 
we achieved using Compreno technology was 0.83, which is lower than the 
best results claimed by the researchers using machine learning approaches. 
Our system is still under development at the moment and we hope to improve 
its performance in the future. One of the advantages of Compreno technology 
is that, unlike many statistical approaches, it does not show an abrupt perfor-
mance drop if the test corpus is changed. Thus Compreno demonstrates little 
dependence on the exact textual data it receives and therefore might be seen 
as a more universal and less domain-dependent solution. Our tests on the 
CoNLL corpus yielded an F‑measure of 0.75 with no prior adjustments made.

Key words: information extraction, named entity recognition, syntactic 
analysis, anaphora and coreference resolution, production rule systems

Introduction

The article describes an information extraction method which is the core of the 
data mining system that has been in development by ABBYY over the last three years. 
This system is an integral part of a more universal text analysis technology known 
as ABBYY Compreno. Its key feature is the ability to perform complete syntactic-se-
mantic analysis of the input text.



Starostin A. S., Smurov I. M., Stepanova M. E.﻿﻿

�

At the first stage a given input is analyzed by the Compreno parser [1]. The result 
is a collection of syntactic-semantic dependency-based parse trees (one tree per sen-
tence). Nodes and edges of each tree are augmented with diverse grammatical and se-
mantic information. The parse tree forest is then used as input for a production system 
of information extraction rules. The application of the rules results in the formation 
of an RDF graph consistent with a domain ontology.

In the first section of the article we provide a description of the information ex-
traction mechanism. We briefly describe the input data, the method used to store ex-
tracted information, the structure of the extraction rules and the algorithm of their 
implementation.

The approach we propose demonstrates two significant advantages. Firstly, 
the availability of syntactic and semantic structure allows us to extract facts as well 
as entities. Fact extraction rules that rely on the structure of syntactic-semantic trees 
tend to be laconic yet highly efficient, easily covering most natural language expres-
sions. Secondly, the system shows little dependence on a particular language. Since 
our parse trees contain language-independent data (like semantic roles or universal 
semantic classes), many extraction rules are universal and can be used for different 
languages.

Despite the fact that we use declarative rules in our system, our approach to in-
formation extraction cannot be described as a rule-based one, because the syntactic 
and semantic analysis that precedes the extraction is not based on a set of rules. The 
sort of analysis performed by the Compreno parser can be defined as model-based: 
it rests upon a multilevel model of natural language created by linguists and then cor-
pus-trained. Thus it is possible to consider our method hybrid, it being model-based 
at the first (preparatory) stage and rule-based at the second.

In the second part of the article we provide the results of the tests we conducted 
to evaluate our system’s performance. We used the MUC-6 corpus to run the tests 
and chose a standard set of information objects (Person, Organization, Location and 
Time) for evaluation.

Information Extraction Mechanism

The input accepted by the information extraction mechanism is a sequence of syn-
tactic-semantic trees (one tree per sentence). These trees are generated by the Com-
preno parser during the analysis. Each tree is projective and its nodes in most cases cor-
respond to the words of the respective sentence, although there are some null-nodes 
with no surface realization. Nodes and edges of a tree are augmented with grammati-
cal and semantic information. More details on the input and the Compreno parser can 
be found in the full version of the paper available on the conference website, or in [10].

The output of the extraction mechanism is an RDF graph. The idea of RDF 
(Resource Definition Framework, [9]) is to assign each individual information ob-
ject a unique identifier and store the information about it in the form of SPO triples. 
S stands for subject and contains the identifier of an object, P stands for predicate 
and identifies some property of an object, O stands for object and stores the value 



A Production System for Information Extraction

	

of that property. This value can be either a primitive data type (string, number, Bool-
ean value) or an identifier of another object.

All the RDF data is consistent with an OWL-DL1 ontology [7] which is predefined 
and static. Information about situations and events is modelled in a way that is ideolog-
ically similar to that proposed by the W3C consortium for defining N-ary relations [2]. 
The consistency of the extracted information with the domain model is a built-in fea-
ture of the system. It is secured, firstly, by the extraction rules syntax and, secondly, 
by validation procedures that prevent generation of ontologically inconsistent data.

In addition to RDF graph, extraction mechanism generates annotations, i.e. the 
information that links extracted entities to the respective parts of the original text. 
The combination of an RDF graph and annotation links will hereinafter be called 
an annotated RDF graph.

An annotated RDF graph is generated at the very final stage of the information 
extraction process. Until that we use a more complex structure to store information 
during the process. This structure can be described as a set of noncontradictory state-
ments about information objects and their properties. Further on we will often call that 
a “bag of statements”. Running a few steps forward, we have to note that all the state-
ments are generated during the process of information extraction rules’ application.

A bag of statements has several important properties:
1.	 Cumulativity. Statements can be added to but not removed from a bag.
2.	 Consistency. All the statements in a bag are non-contradictory to each other.
3.	� Consistency with ontology. A bag of statement can anytime be converted 

into an annotated RDF graph consistent with certain ontology.
4.	� Transactionality. Statements are added in groups, and if any statement 

of a group contradicts other statements from the bag, the addition of the 
whole group is cancelled.

The final annotated RDF graph can also be viewed as a bag of statements, if each 
SPO triple and each link from an object to a segment of text is considered a statement 
about that object. Therefore it is important to point out the difference between our 
temporary information storage structure (the inner structure) and the final output 
in the form of an RDF graph.

The main distinction is that the statements from the inner structure can be used 
to create functional dependencies, i.e. some statements may depend on the presence 
of others. For instance, we can state that a set of values of a certain object̀ s property 
should always contain a set of values of some other property of a different object. 
If the set of values of the second object is changed, the first object's property changes 
as well. We will hereinafter refer to such statements (which use functional dependen-
cies) as dynamic statements. Another difference of the inner structure is that it may 
contain some auxiliary statements that do not comply with the final annotated RDF 
graph structure and are used only during the extraction process.

1	 The OWL DL language subset that we use is similar to OWL Lite, but we also exploit Dis-
jointWith axiom.



Starostin A. S., Smurov I. M., Stepanova M. E.﻿﻿

�

Here is the list of the possible statement types:
1.	� Existence statement. A statement that proclaims the existence of an infor-

mation object and creates unique identifiers for them.
2.	� Class membership statement. A statement that attributes an object to a cer-

tain class in the ontology.
3.	� Property statement. A statement that defines some property of an object.
4.	� Annotation statement. A statement that connects information objects 

to parts of the original input text.
5.	� Anchor statement. A statement that links information objects to parse tree 

nodes, which enables us to access these objects again during the extraction 
process.

6.	� Identification statement. A statement that merges objects which refer 
to a single real-life entity.

7.	� Functional restriction. A function, returning a Boolean value, which makes 
it possible to impose additional restrictions on certain groups of objects. Af-
ter a function has been added to a bag of statements no statement that would 
make the function false can enter the bag.

Figure 1 contains schematic diagrams of all statements types available in our 
system. One can see that only statements of four types may be dynamic. Identifica-
tion, anchor and existence statements may not depend on other statements.

Fig. 1. Types of statements used in the information extraction process. 
Diamonds represent information objects (individuals), ellipses represent 
classes (or concepts) and rectangular boxes represent parse tree nodes

Let us describe anchor statements more thoroughly because they are a very im-
portant part of information extraction mechanism. Anchor statements link informa-
tion objects to parse tree nodes, which enables us to access these objects continuously 
during the extraction process. The term ‘anchor’ was coined when the system was 



A Production System for Information Extraction

	

in development so that the links between objects and tree nodes could be easily referred 
to. One object can be anchored to a set of nodes via a number of anchor statements.

The interpreter of the information extraction rules handles these anchors 
in a special way: the left-hand side  (or condition side) of a rule in our system can 
contain so-called object conditions. These conditions require object(s) with certain 
properties to be anchored to a node before the rule can be executed. And if the object 
was found and the production executed, this object can be accessed in the right-hand 
side of the rule.

Object conditions are most widely used in the rules that extract facts, but they 
are quite useful with named entities as well, since they make it possible to break the 
extraction process down to several simple stages. For instance, one rule might only 
create an unspecified Person entity, while the following ones add properties like first 
name, surname, middle name and alike. It has also become quite common to create 
auxiliary objects which serve as dynamic labels of parse tree nodes. First some rules 
create these auxiliary objects and attach them to certain nodes, and then other rules 
check for these objects with help of object conditions in their left-hand sides.

Detailed information about other types of statements can be found in the full 
version of the article, available on the website of the conference.

Information Extraction Rules

Information extraction process is controlled by the production rule system. There 
are two types of rules in the system: parse subtree interpretation rules (or simply in-
terpretation rules) and identification rules. Since interpretation rules are much more 
frequent, whenever we do not specify the exact type of rule the reader should assume 
that it is an interpretation one. Information on both types of rules can be found in the 
full version of the article, available on the conference website.

During the development of the extraction mechanism several goals were pur-
sued. In the first place, our intention was to exploit such advantages of the produc-
tion rule systems as modularity [8] and separation of knowledge from the procedure. 
We particularly wanted to relieve the developers from the necessity to order the 
rules2. Secondly, we intended to implement an efficient deterministic output model. 
Speaking in terms of traditional production systems [3] we can define parse tree for-
est and a bag of statement as our knowledge base, while the extraction process itself 
can be described as a forward chaining inference process.

2	 One particular example of quasi-production language that does not comply with this re-
quirement is Jape [5]. Jape requires setting the order in which groups of production rules 
(or phrases) are executed explicitly. During their execution rules within a group do not have 
the access to each other’s results. In the process of development of such rules it often occurs 
that the rules which create an object of a certain type are executed after the rules which ac-
cept such an object as their input. Moreover, it is not possible to reorder the rules because 
rules from the first group might also use some objects created by the second group. The only 
solution to this problem is to launch the same groups of rules several times. However, this 
solution is far from ultimate since it artificially limits the number of recursion steps.



Starostin A. S., Smurov I. M., Stepanova M. E.﻿﻿

�

Information Extraction Algorithm

While describing the information extraction algorithm we use the generic term 
‘matching’. By this term we mean both matching of a tree template in an interpreta-
tion rule with a subtree of an actual parse tree and matching of an identification rule 
with a certain pair of objects. Formal definition of matching can be found in the full 
version of the article, available on the conference website. Here we will just point 
out that finding a matching is a sufficient condition for the right-hand side of the rule 
to be converted into a set of statements.

The information extraction algorithm has the following steps:
1.	� Analyze the input text with the Compreno parser to get a forest of syntactic-

semantic parse trees.
2.	� Find all the matchings for the interpretation rules that do not have object 

conditions.
3.	 Add the matching to the sorted matching queue
4.	 If the queue is empty, terminate the process.
5.	 Get the highest priority matching from the queue
6.	 Convert the right-hand side of the production a group of statements.
7.	 Try to add the statements to the bag.
8.	 If failed, declare the group of statements invalid and go to step 4.
9.	 Else if succeeded, look for new matchings.
10.	 If found, add new matches to the queue Go to step 4.

Fig. 2. Schematic representation of the information extraction process



A Production System for Information Extraction

	

Some parts of the above algorithm need to be described more thoroughly. 
Steps 2 and 9 are performed with the help of a special matching mechanism. This 
mechanism can retrieve all the matches for the rules without object conditions. 
It also constantly monitors the contents of the bag of statements. Every time step 7 
is performed successfully and new statements get into the bag, the mechanism 
takes them into account and, if necessary, generates new matches for the rules 
that do contain object conditions. These new matchings can be created both for 
the rules that have already been matched before and for those which remained un-
matched until that moment. The former occurs when an object condition of a cer-
tain rule is matched by more than one object. In this case each object is matched 
in a separate matching.

The implementation of the matching mechanism is relatively complex. For one, 
it has a built-in bytecode interpretor for the compiled rules, a system of indexes for the 
syntactic-semantic trees, a module for tracking changes in the bag of statements and 
several other features. Full-length description of this mechanism is beyond the scope 
of the paper.

It is also important to explain the way the queue of matchings is sorted at the 
third step. In some cases developers can set the order of rules, i.e. there is partial 
order over the whole set of rules. Of any two rules one can be given priority over the 
other. It means that if both rules are ready to be executed, the rule with the higher 
priority should go first. For convenience reasons we also support group ordering 
of rules. If group A was given priority over group B, then each rule belonging to group 
A has higher priority than one belonging to group B. Partial order relation is transi-
tive. Correctness of partial order is checked every time a system of rules is compiled. 
If loops are detected, compilation fails and the user receives an error message. The 
order of matching in the queue is always consistent with the partial order set within 
a system of rules. This approach differs significantly from those with consecutive ex-
ecution of rules, since partial order only determines the priority of rules and does not 
prevent repeated execution.

It is easy to see that the described algorithm does not consider alternatives. 
If some matching is inconsistent with the bag of statements in its current state, it is sim-
ply dismissed. We can afford to use this ‘greedy’ principle because our parser performs 
word-sense disambiguation, so we rarely ever have to hypothesize about a node. There 
some exceptions like words unknown to the parser, but for such cases we have special 
methods of dealing with these words and incorporating them in our model.

Evaluation

We tested our system on the texts that were manually annotated with name enti-
ties for the 6th Message Understanding Conference (MUC-6) held in November 1995 
[4]. Today the MUC-6 data set is considered one of the main evaluation benchmarks 
for named entity recognition. You can find the detailed description of the evaluation 
process in the full version of the article. In the paper version we limit ourselves only 
to results, which are shown in the table below:



Starostin A. S., Smurov I. M., Stepanova M. E.﻿﻿

�

Table 1. Evaluation results

Type of entity Precision Recall F-measure
All entities 0.853 0.813 0.832
Money 0.947 0.933 0.940
Person 0.700 0.887 0.783
Location 0.936 0.806 0.866
Organization 0.767 0.639 0.697
Date 0.941 0.880 0.910
Time 0.674 0.573 0.620

These results are lower than the numbers shown by machine-learning systems 
on MUC-6 original test corpus of 30 texts (the F-measures of many systems that par-
ticipated in the contest were higher than 90% and the winner reached 96,42% in F-
measure). However it is worth noting that our system was not specifically trained 
on MUC-6 corpus texts or any other WSJ articles. We also did not make any deliberate 
changes in our model (apart from the technical ones, see the description in the full 
version of the article) that could artificially improve performance on this particular 
set of texts. It would be correct to assume that our system was put in position of a sta-
tistical entity extractor trained on a completely different corpus.

Error analysis demonstrated that approximately 60% of the errors were the er-
rors of the Compreno parser, 20% occurred due to flaws in the extraction rules and the 
MUC-6 corpus inconsistencies accounted for the remaining 20%. These results show 
that the system has a significant potential for further development, especially since 
there are hopes to improve the quality of the syntactic-semantic parser.

After testing our system on MUC-6 corpus we also conducted additional tests 
on CoNLL corpus [6]. During these tests no settings were modified and no changes were 
made whatsoever. The resulting F-measure was 0,75. This allows us to make a prelimi-
nary conclusion that our system is more resistant to the replacement of one corpus with 
another than systems based on machine-learning approaches. In the near future we in-
tend to conduct a more extensive performance evaluation on several other corpora.

We do realize that the tests we conducted are insufficient to provide complete evalu-
ation of the system performance (and give the reader full insight of the system), espe-
cially since the spectrum of its applications is much wider than named entity recognition.

Conclusion

In this paper we described an information extraction mechanism based on a pro-
duction rule system. The rules are applied to the results of full syntactic-semantic 
analysis performed by the Compreno parser. The output of the extraction mechanism 
is an RDF graph consistent with domain ontology and augmented with information 
about annotations of extracted individuals.

We also presented the idea of storing extracted information as a set of dynamic 
logical statements. We mentioned two types of declarative extraction rules: interpre-
tation rules that interpret subtrees of syntactic-semantic trees and identification rules 



A Production System for Information Extraction

	

that merge information objects. We gave schematic description of the information ex-
traction algorithm.

A considerable advantage of the system we have created is that a developer 
of rules does not have to set the order of their execution. Rules are executed in arbi-
trary order if there is data that matches their left-hand sides. However, if the necessity 
appears, the developer can set partial rule order.

Finally, we present the results of the evaluation tests we conducted on the 
MUC-6 manually annotated corpus. Our system demonstrated relatively good per-
formance with no prior adjustments made. Additional tests on the CoNLL corpus al-
low us to make a preliminary conclusion that our system is not dependent on a par-
ticular corpus (like statistical ones often are) and remains efficient after the corpus 
is changed. To confirm this conclusion further tests are required and we plan to con-
duct them in the nearest future. After these tests are performed we intend to publish 
a new article focusing on the task of fact extraction.

References

1.	 Anisimovich K. V., Druzhkin K. Ju., Minlos F. R., Petrova M. A., Selegey V. P., Zuev K. A.� 
(2012), Syntactic and semantic parser based on ABBYY Compreno linguistic technol-
ogies, Computational Linguistics and Intellectual Technologies: Proceedings of the 
International Conference “Dialog” [Komp’iuternaia Lingvistika i Intellektual’nye 
Tehnologii: Trudy Mezhdunarodnoj Konferentsii “Dialog”], Bekasovo, pp. 90–103.

2.	 �Defining N-ary Relations on the Semantic Web, available at http://www.w3.org/
TR/swbp-n-aryRelations

3.	 Gavrilova T. A., Khoroshevskij V. F.� (2000) Knowledge Bases of Intellectual Sys-
tems [Bazy znanij intellektual’nyh system], Piter, St. Petersburg, Russia

4.	 Grishman R., Sundheim B.� (1996), Message Understanding Conference—6: 
A Brief History, available at: http://acl.ldc.upenn.edu/C/C96/C96-1079.pdf.

5.	 Karasev V., Khoroshevsky V., Shafirin A.� (2004), New Flexible KRL JAPE+: Devel-
opment & Implementation, Knowledge-Based Software Engineering. Proceed-
ings of the Sixth Joint Conference on Knowledge-Based Software Engineer-
ing, Amsterdam.Language-Independent Named Entity Recognition, available 
at http://www.cnts.ua.ac.be/conll2003/ner/

6.	 �OWL Web Ontology Language Overview, available at http://www.w3.org/
TR/2004/REC-owl-features-20040210

7.	 Pospelov D. A.� (1989) Modelling Reasoning. Experience in the Analysis of Men-
tal Acts[Modelirovanije Rassuzhdenij. Opyt Analiza Myslitel’nyh Aktov]. Radio 
i Svayz, Moscow, Russia.

8.	 �Resource Description Framework, available at http://www.w3.org/RDF/
9.	 Zuev K. A., Indenbom M. E., Judina M. V.� (2013), Statistical machine translation 

with linguistic language model, Computational Linguistics and Intellectual Tech-
nologies: Proceedings of the International Conference “Dialog” [Komp’iuternaia 
Lingvistika i Intellektual’nye Tehnologii: Trudy Mezhdunarodnoj Konferentsii 
“Dialog”], Bekasovo, vol. 2, pp. 164–172.


	A Production System for Information Extraction Based on Complete Syntactic-Semantic Analysis
	Introduction
	Information extraction mechanism 
	Information extraction rules 
	Information extraction algorithm 
	Evaluation
	Conclusion 
	References


